
Monotone and Oscillation Matrices 
Applied to Finite Difference Approximations 

By Harvey S. Price' 

1. Introduction. In solving boundary value problems by finite difference 
methods, there are two problems which are fundamental. One is to solve the ma- 
trix equations arising from the discrete approximation to a differential equation. 
The second is to estimate, in terms of the mesh spacing h, the difference between 
the approximate solution and the exact solution (discretization error). Until re- 
cently, most of the research papers considered these problems only for finite dif- 
ference approximations whose associated square matrices are Al-matrices.2 This 
paper treats both of the problems described above for a class of difference equa- 
tions whose associated matrices are not M-matrices, but belong to the more gen- 
eral class of monotone matrices, i.e., matrices with nonnegative inverses. 

After some necessary proofs and definitions from matrix theory, we study the 
problem of estimating discretization errors. The fundamental paper on obtaining 
pointwise error bounds dates back to Gershgorin [12]. He established a technique, 
in the framework of M-matrices, with wide applicability. Many others, Batschelet 
[1], Collatz [6] and [7], and Forsythe and Wasow [9], to name a few-, have general- 
ized Gershgorin's basic work, but their methods still used only All-matrices. Re- 
cently, Bramble and Hubbard [4] and [5] considered a class of finite difference 
approximations without the M-matrix sign property, except for points adjaacent to 
the boundary. They established a technique for recognizing monotone matrices 
and extended Gershgorin's work to a whole class of high order difference ap)p)roxi- 
mations whose associated matrices were monotone rather thaii 31-matrices. We 
continue their work by presenting an easily applied (criterion for recognizilng moRo- 
tone matrices. The procedure we use has the additional advantage of simplifying 
the work necessary to obtain pointwise error bounds. Using these new tools, we 
study the discretization error of a very accurate finite difference approximlation to 
a second order elliptic differential equation. 

Our interests then shift from estimating discretization errors of certain finite 
difference approximations to how one would solve the resulting system of linear 
equations. For one-dimensional problems, this is not a serious consideration since 
Gaussian elimination can be used efficiently. This is basically due to the fact that 
the associated matrices are band matrices of fixed widths. However, for two-diimen- 
sional problems, Gaussian elimination is quite inefficient, because the associated 
band matrices have widths which increase with decreasing mesh size. Therefore, 
we need to consider other approaches. 

For cases where the matrices, arising from finite difference approximations, are 
symmetric and positive definite, many block successive over-relaxation methods 
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may be used (Varga [29, p. 77]). Also, for this case, a variant of ADI, like the 
Peaceman-Rachford method [18], may be used. In this instance, convergence for a 
single fixed parameter can be proved (cf. Birkhoff and Varga [2]) and, in some 
instances, rapid convergence can be shown using many parameters cyclically (cf. 
Birkhoff and Varga [2], Pearcy [19], and Widlund [28]). For the case of Alternating 
Direction Implicit methods, the assumption of symmetry may be weakened to 
some statement about the eigenvalues and the eigenvectors of the matrices. Know- 
ing properties about the eigenvalues of finite difference matrices is also very im- 
portant when considering conduction-convection-type problems (cf. Price, Warren 
and Varga [22]). Therefore, we next obtain results about the eigenvalues and the 
eigenvectors of matrices arising from difference approximations. Using the con- 
cepts of oscillation matrices, introduced by Gantmacher and Krein [10], we show 
that the H and V matrices, chosen when using a variant of ADI, have real, posi- 
tive distinct eigenvalues. This result will be the foundation for proving rapid con- 
vergence for the Peaceman-Rachford variant of ADI. Since Bramble and Hubbard 
[5] did not consider the solution of the difference equations, we consider this a 
fundamental extension of their work. 

This paper is concluded with some numerical results indicating the practical 
advantage of using high order difference approximations where possible. 

2. Matrix Preliminaries and Definitions. Let us begin our study of discretization 
errors with some basic definitions: 

Definition 2.1. A real n X n matrix A = (a , ) with at X < 0 for all i < j is an 
M-matrix if A is nonsingular, and A-' > 0.3 

Definition 2.2. A real n X n matrix A is monotone (cf. Collatz [7, p. 43]) if for 
any vector r, Ar ? 0 implies r 2 0. 

Another characterization of monotone matrices is given by the following well- 
known theorem of Collatz [7, p. 43]. 

THEOREM 2.1. A real n X n matrix A = (atj) is monotone if and only if 
A-1 > 0. 

Theorem 2.1 and Definition 2.1 then imply that M-matrices are a subclass of 
monotone matrices. The structure of M-matrices is very complete, (cf. Ostrowski 
[17], and Varga [29, p. 81]), and consequently they are very easy to recognize when 
encountered in practice. However, the general class of monotone matrices is not 
easily recognized, and almost no useful structure theorem for them exists. There- 
fore, the following theorem, which gives necessary and sufficient conditions that an 
arbitrary matrix be monotone, is quite useful. 

THEOREM 2.2. Let A = (a, j) be a real n X n matrix. Then A is monotone if and 
only if there exists a real n X n matrix R with the following properties: 

(1) M = A + R is monotone. 
(2) M-1R > 0. 
(3) The spectral radius p(M-lR) < 1. 
Proof. If A is monotone, R can be chosen to be the null matrix 0, and the 

above properties are trivially satisfied. 
Now suppose A is a real n X n matrix and R is a real n X n matrix satisfying 

properties 1, 2 and 3 above. Then, 

3The rectangular matrix inequality A > 0 is taken to mean all elements of A are nonnegative. 
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A = M-R = M(l-M-1R) 

and 

A-' = (1 -M-R)-'M-. 

Since property 3 implies that M-'R is convergent, we can express A-' as in Varga 
[29, p. 82], 

(2.1) A-' = [1 + Ml-'R + (M-'R)2 + (M-'R)3 + *M-1 

As M-'R and M-1 are both nonnegative, we see from (2.1) that A-' is nonnegative, 
and thus by Theorem 2.1, A is monotone. Q.E.D. 

It is interesting to note that if R can be chosen to be nonnegative, then prop- 
erty 1 of Theorem 2.2 defines a regular splitting of the matrix A (cf. Varga [29, p. 
89]). When R is of mixed sign, this theorem is a slightly stronger statement of 
Theorem 2.7 of Bramble and Hubbard [5]. As will be seen later, it is much easier 
to find a monotone matrix M which dominates A, giving a nonnegative R, than to 
choose R such that property 2 of Theorem 2.2 is satisfied. This is one of the major 
deviations between this development and Bramble and Hubbard's in [4], [5]. 
Also, for this reason, we shall, from now on, be concerned with constructing the 
matrix M rather than the matrix R. 

We shall now conclude this section by defining some vector and matrix norms 
which we shall use in the subsequent development. 

Let VI7(C) be the n-dimensional vector space of column vectors x, y, z, etc., 
with components xi, ys, zi, 1 < i < n, in the complex number field C. 

Definition 2.3. Let x be a column vector of Vn(C). Then, 

n 

I{XI12 3 Xx - Z IXi12 

is the Euclidean (or L2) norm of x. 
Definition 2.4. Let x be a column vector of V17(C). Then 

1x14C a Max fxil 
1_ i<n 

is the maximum (or Loo) norm of x. 
The matrix norms associated with the above vector norms are given by 
Definition 2.5. If A = (asj) is an n X n complex matrix, then 

|A 112 su IA x112 = [p (A *A )]1/2 

is the spectral (or L2) norm of A. 
Definition 2.6. If A = (ai,) is an n X n complex matrix, then 

IIA11 _ SulkA x=Su Max E kaijJ A X IIXIIC- 1< i<n j1= 

is the maximum (or L.C) norm of A. 

3. An O(h4) Difference Approximation in a Rectangle. For simplicity, we shall 
consider first a rectangle, R, in two dimensions, with a square mesh (size h) which 
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fits R exactly. Later, we shall consider the modifications necessary to obtain point- 
wise O(h4) discretization error estimates for general bounded domains. This will, of 
course, include rectangular regions which are not fit exactly by a square mesh. 

Let us consider the numerical solution of the following second order elliptic 
boundary value problem in the rectangle R with boundary C: 

AX2 1 2axy 
O _ rn On O1__<s l1n f_ e 

(3 1) Y YdJ Yr ,J ?YJ 4?JJ b 

a ~ ~~~~ g8:= 9(y); (XIY) C C. 

We also assume that q(x, y) ? 0 in 7, the closure of R. 
With the aid of Fig. 1, we shall define the following sets of mesh points, assuming 

the "English or typewriter ordering" (i.e., numbering the mesh points from left to 
right, top to bottom), 

t1 2 th r 

ary of I?. 2 

negbr i7n C4 

to (3.1): G 

(h 

_ X _~~~~~~~~_ r ~ ~ ~ ~ ~~0 q 

FI 0~ 

. * * s~~~~~~~~~~ 
wtth a the runnlng lnav. ~ ~ ~ ~ 

w~ith li 3.1 the runin index.to ni yo dpms hc i nC}teb 

ary of R. 
Definition 3.2. C!$* is the set of indices, a, of interior grid points which have two 

of their four nearest neighbors in Ch. 

Defi itio 3.3. Chv and Ch" are, respectively, the set of indices, a, of the interior 
grid points with exactly one of the two, vertical or horizontal, respectively, nearest 
neighbors in C;h 

De~finto 3.4. Rh is the set of indices, a, of interior grid pfoins not 'in Ch** + ChH 
+ te 17 

Now, by means of Taylor's series assuming u(X, y) has six continuous derivatives 
in 77, (i.e., u (E C6 (R)), wre can derive the following finite difference approximation 
to (3. 1): 

(3.2) DAu-=f + v. 
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The vectors u and f are defined to have components ua and fa which are just the 
functions u(x, y) and f(x, y) of (3.1) evaluated at the mesh points. The N X N 
diagonal matrix D has entries da,a given by 

(3.3) da,a = 1 , a C Ch, da.a = 1/12h2 otherwise, 

and the N X N matrix A = (a ij) is defined as4 

(Aw)a = wa , aC Ch ; 

(Aw)a = - (12 + 6sah)Wa-n- (12 + 6rah)wa1 

+ (48 + 12qah2)wa- (12- 6rah)wa+l 
- (12 - 6Sah)Wa+n, a Ch** ; 

(Aw)a = - (12 + 6Sah)Wa, + (1 + rah)Wa-2 - (16 + 8rah)Wa-1 

(3.4) + (54 + 12qah2)wa - (16- 8rah)wa+l + (1 -rah)wa+2 
- (12 - 6Sah)Wa+n, a ChV; 

(Aw)a = (1 + sah)wa-2n - (16 + 8sah)wa, - (12 + 6rah)Wa-i 

+ (54 + 12qah2)wa - (12 - 6rah)wa+l - (16 - 8sah)wa+n 
+ (1 - sah)wa+2n , aC Ch ; 

(Aw)a = (1 + Sah)Wa-2n - (16 + 8sah)Wa-n + (1 + rah)wa-2 

- (16 + 8rah)wa-1 + (60 + 12qah2)wa - (16 - 8rah)wa+l 
+ (1 - rah)wa+2 - (16 - 8ah)Wa+n + (1 - Sah)Wa+2n , a C Rh 

where n is the number of mesh points in one row and m is the number of rows. Thus, 
N = mn. Finally, the vector c of (3.2) has components Ta given by 

Ta =0 (h2), a C Ch** + ChV + ChH Ira = O (h4), a E Rh; 

T(. = O, a ChC - 

a C Ch** a C ChV 

a-n a-n 
a-1 a a+ 1 a-2 a- 1 a a+1 a+2 

a + n a + n 

a C Ch a E Rh 

a-2fn a-2n 
a-n a-n 

a-1 a a+1 a-2 a- 1 a a+l a+2 
a + n a + n 
a + 2n a + 2n 

FIGURE 2 

With the following definitions: 

4See Fig. 2 for a display of the locations of the matrix couplings. 
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r Max Ir(x, y)l, 
(yY) CE1 

(3.6) s = Max |s(x, y)l , 
(Xzy) CEi 

q Max jq(x, y)l, 
(xy) CR 

we are now ready to state 
LEMMA 3.1. There exists a monotone matrix M, such that for A as defined by (3.4), 

M ? A for all 

(3.7) 1 { M (i2n) /} 

Proof. We will construct M as the product of two M-matrices, i.e., M = M1M2. 
With M1 and M2 defined by 

(Miw)a= 4Wa a Chk; 

(Mlw)a = -(1 + rah)wa1 + 8wa - (1 - rah)wa+l, a & CAh; 

(3.8) (Miw)a = -(1 + sah)wa-n + 8wa - (1 -sah)wa+n, a C Ch'; 

(Mlw)a = 8Wa, a C Ch**; 

(M1w)a = - (1 + sah)wa-n- (1 + rah)wa-i + 8wa- (1 - rah)wa+i 
- (1 -sah)Wa+n a C= Rh; 

and 

(3.9) (M2W)a = 4wa, a C Ch; 

(MMw)a = -Wan - Wa- + 8wa - Wa+- Wa+n, otherwise; 

It is easily verified by direct multiplication that.M M1M2 is given by5 

(Mw) a = 16Wa, a a ChC ; 

(Mw)a = -8wa-n - 8Wa-1 + 64Wa - 8Wa+l - 8Wa+n a C Ch**; 

(Mw)a = (1 + rah)wa-n-l - 8wa-n + (1 - rah)wa-n+l + (1 + rah)was2 
- (16 + 8rah)wa-i + 66Wa - (16 - 8rah)wa+l + (1 - rah)wa+2 

+ (1 + rah)wa+n-1 -8Wa+n + (1 - rah)wa+n+i, aE ChV; 

(Mw)a = (1 + Sah)Wa-2n + (1 + Sah)Wa-n-i - (16 + 8Sah)Wa-n 

+ (1 + Sah)Wa-n+l- 8Wa-l + 66Wa- 8Wa+l 

(3.10) + (1 - Sah)Wa+n-1 - (16 - 8ah)Wa+n + (1 - Sah)Wa+n+i 

+ (1 - Sah)Wa+2n a Ea Ch"; 

(Mw)a = (1 + sah)Wa-2n + (2 + Sah + rah)wan-i- (16 + 8Sah)Wa-n 

+ (2 + Sah - rah)wa-n+l + (1 + rah)wa-2 - (16 + 8rah)wai 
+ 68Wa - (16 - 8rah)Wa+l + (1 -rah)wa+2 

+ (2 + rah - sah)Wa+n-i - (16- 8ah)Wa+n 

+ (2- Sah - rah)Wa+n+i + (1 -Sah)Wa+2n , a EC Rh. 

Now, for all h satisfying (3.7), it is easily seen that M > A, and since (3.7) 
implies that Irahl < 1 and Isahl < 1, M1 and M2 are easily shown to be M-matrices 

I Fig. 3 may help to better illustrate these long formulae for the matrix M. 
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(cf. Varga [29, p. 84]). Since M-1 = M2-'Mj- > 0_ M is monotone. Q.E.D. 
THEOREM 3.1. The matrix A defined by (3.4) is monotone for all h satisfying (3.7). 
Proof. We shall now show that p(M-1R) < 1, where R M - A. Define the 

vectors e, k, and n to have components 

ea=i, for all a; 
(3.11) {a = 1, a E Ch; {a = 0, otherwise; 

?1a = 1, as&E Ch**+CV+CH; l=O otherwise . 

Since qa > 0 for all a, we have from (3.4) that 

(3.12) Ae ?. 

Since M ? A and M is monotone, we have from (3.12) that 

(3.13) 0 < M-'Re = e -M-1Ae < e -M-1 = e -M2-lMi-l 

From (3.8) and (3.11), it is easily seen that M1i = 4t giving 

Using this in (3.13), we have, if M2-1k > 0, 

(3.14) 0 _ M-'Re < e-4M2-1k < e. 

a E a a C C? 

a -n a<-n-i a -n a-n +1 
a-1 a a + a-2 a-1 a a+ 1 a+2 

a + n a+n-1 a++ a+n+ 1 

a G ChAa C ERh 

a- 2n a- 2n 
a-n-I a-n a -n + 1 a-n-1 a -n a -n + 1 

a-i a a +I a -2 a-1 a a+I a +2 
a+n-i a+n a n+ 1 a+n-i- x a+n a+n+ 1 

a + 2n a + 2n 
FIGURE 3 

It remains to be shown that M2-1' > 0. We obtain by direct calculation using (3.9) 
and (3.11) that M2k < 4k - n. Since M2 is an M-matrix, this gives 

(3.15) 1(k + M2-1n) < M2-'t. 

If we now renumber our grid points so that the points corresponding to indices 
a EC Ch come first, we have 

(3.16) PM2P -Ml i 
M21 M22- 

for a suitable permutation matrix P. The submatrix M22 is now easily seen to be an 
irreducibly diagonally dominant M-matrix and, therefore, M-1 > 0 (cf. Varga [29, 
p. 85]). From (3.16) it is seen that 
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(3.17) (PM2P)-1 = [ ML 0 1 

-M22-M21MTIl M22- 

and from the definitions (3.11) 

where Pn is partitioned to conform with (3.16) and (3.17). Therefore 

(3.18) (PM2P) 'Pn = PM2n = [ ? '1 

M221 a 

If Pt is also partitioned, to conform with (3.16) and (3.17), we have 

(3.19) t [ 

where k' is, by definition (3.11), a vector of all ones. Also, by definition, n' > 0, with 
at least one entry positive giving 

P(q + M2-'n) > 0 . 

This, coupled with (3.15), proves that M2-'k > 0, finally verifying (3.14). From 
(3.14), we deduce that IIM-'RII. < 1, and from the simply proved inequality (see 
Varga [29, p. 321) 

p(A) < IIA Ito 2 

we obtain the desired result 

(3.20) p(M-'R) < 1. 

Thus, (3.20) and lemma (3.1) imply that A satisfies the hypothesis of Theorem 2.2. 
This proves that A as defined by (3.4) is monotone. Q.E.D. 

We will now examine the truncation error from approximating (3.2) by 

(3.21) DAv = f. 

Subtracting (3.21) from (3.2), we have, from the definitions (3.3), (3.6) and (3.11), 

(3.22) 11v -ulj = IIA-'D-',jIIj0< Kih4jjA-1ntjO, + K2h6jjA-1(e -n - ) l 

With Ao derived from A by setting q = 0 in (3.4), we have that Ao is monotone 
by arguments similar to Theorem 3.1 and from a well-known result (cf. Henrici 
[14, p. 362]) 

(3.23) A0-1 > A-1 > 0. 

The next lemma is due to Roudebush [24, p. 34] and represents an extension oi some 
work of Isaacson [16]. 

LEMMA 3.2. Let e, ,, and n be defined by (3.12). Then, for A defined by (3.4) 

(3.24) I1A'I(e - -n) II? K3h-2 
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for all 

In 2 In 2 
()1/2 ' 

(3.25) h < Min_{_ln2_ ln2 2 
4(2s +1)' 4(2r +1)' 39 1' 

where r, s, and q are defined by (3.6). 
Proof. Following Roudebush [24], we define the function 'y(x, y) to be 

y(x, y) _ 
- e(2~l)x - e(2 +)V, (x, y) E R. 

where uh ? e(8+1)2d and d is the diameter of R. Let y be the vector whose ath com- 
ponent (where a corresponds to the (i, j)th mesh point) is given by 

ya = Y(Xiyj) C Rh + Ch + Ch** + ChV + ChH 

By Taylor's theorem, with Ao defined as above, we have 

1(A o)0.+ 
- Sa 

12h Ox2 l .(l2)+ 
2 

dx.() 0t y j 

a C Rh + Ch** + ChV + ChH 

where 

(i - 2)h <xi(), Xi(2) <?(i + 2)h 2 < i < n-2, 

(j -2)h < yj/l) yj (2) < (j + 2)h, 2 < j < m -2, 

and 

(i - )h <xi('), Xi(2) < (i +1)h, i= 1,n -1, 

(j- 1)h < yj/l) yj (2) < (j + 1)hy j = 1,m m-1. 

Therefore, 

1h2 (Aoy), = (2r + 1)2 exp [(2r + 1)xJi(l)- ra(2r + 1) exp [(2r + 1)xi(2)J 

+ (2s + 1)2 exp [(2s + i)yj(1)] + Sa(2s + 1) exp [(2s + 1)yj(2)J 

>1, a CRh 

for all h satisfying (3.25). Since 

12h 
_ ? for ot C Ch** + Ch V+ ChH + Ch, 

we have, finally, 

1 
12 2 (Aoy) > (e n)- 

from which (3.24) follows using also (3.23). Q.E.D. 
LEMMA 3.3. With the definitions of this section, 

(3.26) WIA-lbllt < 1 

Proof. With A o derived from A by setting qa 0 in (3.4), we have from (3.23) 
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(3.27) 0 < A-In < Ao-In. 

We now compute Ro M -Ao, using (3.10), to be6 

(R0ow)a = 15wa a CYeCh 

(Row)a = (4 + 6sah)wan + (4 + 6rah)wai_ + 16wa 
+ (4 - 6rah)wa+i + (4 - 6sah)Wa+n a C Ch** e 

(Row)a = (1 + rah)wa-n-i + (4 + 68ah)Wa-n + (1 - rah)wa-n+i 
+ 12Wa + (1 + rah)wa+n-l + (4 -68ah)Wa+n 

(3.28) + (1 - rah)Wa+n+ , Ca e Ch; 

(Row)a = (1 + sah)Wa-n-i + (1 + sah)Wan+i + (4 + 6rah)wai 
+ 12Wa + (4 - 6rah)wa+l + (1 -Sah)Wa+n-l 

+ (1 - Sah)a+n+l , C Ch H; 

(RIow)a = (2 + sah + rah)wa-ni + (2 + sah - rah)wa-n+l + 8Wa 
+ (2 + rah- Sah)Wa+n- + (2 -rah- Sah)Wa+n+l C e Rt 

aC Che C E ChV 

a-n a-n-i a-fn a-fn+l 
a- 1 a + a 

a + n a+n a + n a + n +1 

aC eChH aCe Rh 

a-n-i a-fn+ a-n-i a-fn+l 
aC- a a + 1 a 

a+n-1 a+n+ 1 a+n-1 a+n+ 1 

FIGURE 4 

Let us define the diagonal matrix D- to have diagonal entries daa given by 

39"da,a =2, aeCCh +Ch**; aa3/2, aecChV +GhH 
da = 1 a l Rh. 

With e, k and n as defined by (3.11), we readily verify, using (3.7), that 

(3.30) Ro(e- k) < 16b(e- [)-4n. 

From (3.8) and (3.9), we compute directly 

Mj(e - ) = 4D (e - k) > 4(e -[, M2(e-, _ 4(e -[, 

and, since M1 and M2 are M-matrices, 

(3.31) 4(e- ) - Mr-1D(e- ) > Ml1-(e - 

(3.32) 1(e - ) > M21(e- 

Using (3.30), (3.31) and (3.32), it is easily seen that 

6 See Fig. 4 for an illustration of the location of the couplings of the matrix Ro. 
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RoM2-1Mr1-D(e-) < b(e - -1n 

from which it follows that 

(I- RoM2-'Mr-1)fD(e -) > 1n 

Collecting these results, we have 

333) AoM2-1M,--D(e -) = (I - ROM2-lM1M1)M1M2M2-1Mr_1D(e- 
= (I - RoM2-1M -')D(e - n 

and since Ao is monotone, (3.33) gives 

(3.34) 4M2l-Mrl-(e - ) > Ao-1,j. 

Now, (3.26) follows easily from (3.27), (3.31), (3.32), and (3.34), which completes 
the proof. 

Now using (3.24) and (3.26) in (3.22), we have 
THEOREM 3.2.7 If u(x, y), the solution of (3.1) in the region R, has bounded sixth 

derivatives in R, and u is a vector whose ath component, where a corresponds to the 
(i, j)th mesh point, is given by ua = u(xi, yj), and if v is the solution of (3.21), then for 

(3.35) h < Min 8r X 48 + 4 

we have 

u - vW, K4h4, 

where K4 is independent of h. The constants r, s and q are defined by (3.6). 
The result of this theorem is an extension of a known result of Bramble and 

Hubbard [5] to the case where r(x) 4 0. However, the proof given here is substan- 
tially different from theirs, and gives a computable sufficient upper bound for h, 
(3.35). 

4. Extension to a General Bounded Region. We again consider the partial 
differential equation of (3.1), but we assume now that R is a general bounded domain 
with boundary C. If we construct a square grid (size h) covering R, it can be seen 
from Fig. 5, that, in addition to the sets of grid points defined above, we need 

Definition 4.1. Ch* is the set of indices, a, of interior grid points which have at 
least one and at the most two of its four nearest neighbors not on the same grid line 
in Re, the complement of R. 

Note that the assumption that points in Ch* can have at most two nearest neigh- 
bors in Rc and that these may not be on the same grid line, may eliminate certain 
regions with corners having acute angles.8 However, if C has a continuously turning 
tangent and h is sufficiently small, this assumption can always be satisfied. 

7Remark. It should be noted here that all the results of this section are equally valid for a 
region R which is the sum of squares, and therefore, Theorem 3.2 is valid for this type of region. 

8 We point out here that if the smallest boundary angle is oa > 0, then using a Ax # Ay would 
allow us to cover such angles. The assumption, Ax $ Ay, does not change the results of the previous 
section, so we actually can consider most cases of interest by a suitable choice of Ax/Ay _ K, and h 
sufficiently small, where h = Max (Ax, Ay). 
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We shall now define a finite difference approximation to (3.1), assuming u E 

COR), in matrix notation as 

(4.1) (1/12h2)lu = f + V. 

1c 

mm ~~~~~~~~~~~~~O - q 

A C\ 

Hi ra~~~~~~~~~~~ 

FIGURE 5 

For the sets of grid points Ch**, ChV, ChH, and Rh the Eqs. of (4.1) are defined exactly 
as before, (cf. (3.4) and (3.5)). We, therefore, need only define the equations of (4.1) 
for grid points ae E C4*. If a point is in Ch*, there are many different cases to con- 
sider (i.e., its nearest neighbor on the left, right, bottom, or top, is in Re, as well as 
its two nearest neighbors on the left and top, top and right, right and bottom, or 
bottom and left, are in RC). For simplicity, we shall list only two of these eight 
possibilities since, from these, the others will be obvious. First assume for a E Ch* 

that the points below and to the left of the ath point are in Rc, as shown in Fig. 6. 
Then, 

1 12(1-X) ( (2-X) 1-2raXh 

12h 2 X + 2 Ua+2- 24 X + 1- - -- + JUa 

( 72 + 12rahl)x-hy 
- X + 1)G +2) + X12 h F) (x - Xh, y) 

( \1qah 2 + 12(3- X) + 12rah(1 - X) + 12 (3 - u) + 12sah(1 U- 

(4.2) ' 
X 

12(1-) 24 (2 - A)' 12sa~hA 

+ A + 2 U~ U _ \ + 1 )U + 1 

(, + 1 + 2 +7 12h +))g(x, y -h)} =fa + O(h2) 
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where Xh is the distance, in the x-direction, and ,uh is the distance, in the y-direction, 
to the nearest boundary, 0 < X, , < 1 (see Fig. 6). 

\ A~h a th point 

FIGUMRE 6 

If for a E Ch* only the point to the left is in Rc we have 

X ( +2 Ua+2 
4 

(24 (-X) 12r,_h__ 12h 2 {1( - X2 X) _____ 

( 72 + 12rh )(XXXy 

(4-3) - XX+ 1)(X + 2)+ ) 1g(x - Xh, y) 

+ (12qch2 + 24 + 12(3 - X) + 12rah(1 -A) 

- (12 + 6sah)uan - (12 - 6sah)ua+n} = fa + 0(h ). 

Notice that now we are not carrying along dummy equations for the points a E Ch. 
If the boundary of our region R were just the collection of horizontal and vertical 

line segments connecting points of Ch*, the dashed line of Fig. 5, then the finite 
difference approximation to (3.1) on this region would be given by (3.2). Therefore, 
we have that 

(4.4) Ax = DAx + k(x), 

where D1 is a diagonal matrix whose diagonal entries d) are given by 

d(l)=aa, a E Ch*, dl)= 1, otherwise, 

and k(x) is a vector whose components k,,(x) are 

ka(x) = E a, ix, a EE Ch*, k (x) = 0, otherwise . 
j5a 

Using (4.4), we may now rewrite (4.1) as 

Au = 12h2D-1f - D-lk(u) + 12h2Di-',, 

and if v is the solution of 

(4.5) Av = 12h2D-f - D'-lk(v), 

we have that the truncation error e = (u - v) satisfies 

A = 12h2Dr-, -Di-lk(c) . 
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An easy calculation using (4.2), (4.3) and the definitions of D1 and k, gives 

Max I (Di-lk(e))a,,j = Max I (Di-lk(e))<,,a_ a< Z Jjfl < 1 . 
a aCCh j~a da'a~ 1 

Since jIDl-'II, = 1 and A, by Theorem 3.1, is monotone if h satisfies (3.34), we have 

EJ ? (Kih4 + 10J ElloEo> + K2h4A-ln + K3h6A-l(e - n), 

where e, k, and n are defined by (3.11). Using Lemma 3.2 and Lemma 3.3, we have 

11lE Io 
? 

Kh4 + 1J 
11 

from which follows 
THEOREM 4.1. If u(x, y), the solution of (3.1) in a general bounded region RI with 

boundary C, has bounded sixth derivatives in R, and u is a vector whose ath component, 
(a = (i, j)), is 

ua = U(Xiyj) (xiyi) Rh + Ch** + Ch* + ChV + Ch 

and if v is the solution of (4.5), then 

IJEIK. = lu - vjj|. < Kh4, 

for all h satisfying (3.34). 
The results of this section extend the results of ?3, which held for regions which 

were sums of squares, to fairly general bounded domains. This extension follows 
closely a similar extension of Bramble and Hubbard [5], and differs only in that we 
consider a more general class of problems. 

5. Oscillation Matrices and Their Properties. We will begin our study of 
oscillation matrices with some basic definitions. 

Definition 5.1. An n X n matrix A = (aij) will be called totally nonnegative 
(totally positive) if all its minors of any order are nonnegative (positive): 

A (illi2 
.. I 

)p > 0 (1 < 1 
< 2 < 

. 
P < n) (p =1,2, * ...n). 

ki, k2j .., kp ki < k2 < ... < kp 

The square bracket notation 

_ai,,k, aij,k2 
. . . 

ail,kp 

A1 t1, 2, * * p a i2,kl a i2,k2 a i2,kp 

Lk,, k2j .. I kp .................. 

-aip,k, aip,k2 ... aip,kp- 

denotes square submatrices, while parentheses denote determinants of such square 
submatrices. 

9 Excluding regions where points of C,* would have more than two nearest neighbors in the 
complement of R. 
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A ( k1 k k2y 
. . 

.y) = det A| lk i2k *. 
. 
., i 

k7c1 k2j .. , kp -kil k22 .. , kp- 

Some simple properties of totally nonnegative matrices are given by 
THEOREM 5.1. (1) The product of two totally nonnegative matrices is totally non- 

negative. 
(2) The product of a totally positive matrix and a nonsingular totally nonnegative 

matrix is totally positive. 
The proofs of the theorems given in this section are omitted because they involve 

concepts which are too lengthy to develop here. They may be found in either 
Gantmacher and Krein [10, Chapter II], or Price [20, Chapter II]. 

Continuing now with our development, we are ready to define an oscillation 
matrix. 

Definition 5.2. An n X n matrix A = (a , ) is an oscillation matrix if A is totally 
nonnegative and some power of A, AP, p > 1, is totally positive. 

The following theorem gives some of the simplest properties of oscillation 
matrices. 

THEOREM 5.2. (1) An oscillation matrix is nonsingular. 
(2) Any power of an oscillation matrix is an oscillation matrix. 
(3) The product of two oscillation matrices is an oscillation matrix. 
The following is the basic theorem about oscillation matrices. Its proof may be 

found in Gantmacher [11, p. 105], and Gantmacher and Krein [10, p. 123]. 
THEOREM 5.3. If an n X n matrix A = (asj) is an oscillation matrix, then 
(1) The eigenvalues of A are positive distinct real numbers 

X1 > X2 > *.*.* > Xn > 0 . 

(2) If u (' is an eigenvector of A corresponding to the kth largest eigenvalue, then 
there are exactly k - 1 sign changes among the coordinates of the vector, U(k). 

We shall see later in this section that many matrices which arise from finite dif- 
ference approximations of one-dimensional, second order differential equations are 
in fact diagonally similar to oscillation matrices. It is now necessary to develop some 
easy tests to determine if a given matrix A is an oscillation matrix. We will state, 
without proof, such a criterion. 

THEOREM 5.4. An n X n matrix A = (atj) is an oscillation matrix if and only if 
(1) A is nonsingular and totally nonnegative, and 
(2) a i i+i > 0 and a i+, X > 0 (i = 1, 2, * - n 1). 
The proof of this theorem can be found in Gantmacher and Krein [10, p. 139]. 
Since it is quite simple to determine when the superdiagonal and subdiagonal of 

a matrix are positive, it is necessary only to determine if a given matrix is totally 
nonnegative. We will therefore need the following 

THEOREM 5.5. If the n X n nonsingular matrix A = (as ,) has r > 1 superdiagonals 
and s > 1 subdiagonals, i.e., 

aij= 0 unless - r ? i -j s, 

and if for any p < n 
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A k~+ 1..,+p1 P > 0 (iy = 1,2, -. ,n- Pt 1; 

1 - r ? i -k _ s? - 1 

then A is an oscillation matrix. 
The proof of this theorem is developed completely in Price [20]. 

6. The Peaceman-Rachford Method for the Rectangle. Le us consider the 
problem 

a2 au au U au+ (q(a)(X) + (2)U = 

(6.1) (x, y) GR, 
u (x, y) = g(x, y) (x) + q C, 

where R is the rectangle defined by 

R I{(x, y)10 < x < L, 0 < y < W} 

and C is the boundary of R. We shall now place a uniform mesh on R, (i.e., Ax = 

L/(N + 1), where N is the number of interior mesh points in the x-direction and 
Ay = W/(M + 1), where M is the number of interior mesh points in the y-direc- 
tion), and define the totality of difference approximations to (6.1) by 

(6.2) (H + V)v = k. 

The matrices H and V are defined by 

(Hv) 1,3 
-X2 

{1(24 + 12q,1('x2)v1,1 

-(12-6XA 6x)v2,j}, 1 <j < M 

(Hv)2,j- 1- 2 -(16 + 8X2Ax)vl,j + (30 + 12q2 1)Ax2)v2,5 
/x2 

- (16 - 8X2Ax)v3,j + (1 - X2Ax)v4,j}, 1 ? j < M; 
1 

(Hv),j, 2 {(1 + XiAx)Vi-2,j - (16 + 8XiAx)vv.1,j 

(6.3) 4 (30 + 12qi(')Ax2)vi,j- (16 -8Ax)vi+,,j 

+ (1-XAix)vi+2,j}, 2 < i < N-2, 1 < j < M; 
1 

(HV)Nl,j- 2 { (1 + XN-lAX)VN-3,j - (16 + 8XN-lAX)VA-2,j 

+ (30 + 12q(h1AX2)VN_1,J - (16 - 8XN-lAX)VN,j} 

1 <j < M; 

(Hv),, - (12 + 6XNAX)VN-l,j 

+ (24 + 12qN(l) AX2 )VNj} 1 <j < M; 

and 
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(Vv)?,1 ----2 {(24 + 12q (2)Ay2)vtl 

-(12-6sjAx)vi2}, 1 i < N; 

(VV) i, 2 -- {- (16 + 8s2AY)Vi,1 + (30 + 12q2(2) Ay2)V2,j Agl .y 

-(16 - 8s2Ay)Vi,3 + (1 - s2Ay)Vi,4} , 1 < i < N 

(VV) a . -2 { (1 + SjAY)Vi,j-2 - (16 + 8sjAy)vij-l 

(6.4) + (30 + 12qj2)Ay2)Vi,; - (16 -8sjl y)vij+l 

+ (1- SjAY)Vj+2} 1 <i< NY 2 <j < M -2 

(VV) i,M- = -2 { (1 + SM-1AY)VM-3 - (16 + 8sM_1Ay)viM_2 

+ (30 + 12qmlAY2)vi,M-l 

- (16 - 8sMAy)ViM}, 1 < i < N 

(VV) iM -A 2 - (12 + 6sMAy)vj,m-1 
Ay 

+ (24 + 12qM 2 Ay2)ViM}, 1 < i < N 

and k is a vector with n = NM components k j, given by k j, = 12fi,; + (contribu- 

tions from couplings to the boundary). For simplicity, we have not written out in 
full the exact contributions of couplings to the boundary, but these are analogous 
to our treatment in the past. 

Following Varga [29, p. 212], we define the Peaceman-Rachford variant of ADI 

by 

(6.5) (H + rm+iI)v(m+1/2) = (rm+iI - V)v(m) + k 

(V + rm+iI)v(m+l) = (rm+1I - H)v(m?1/2) + k m > O0 

where v(?) is some initial guess and the rm's are positive acceleration parameters. 
Combining the two Eqs. (6.5), we have 

v(+=1) = Trm+Iv(m) + grm+i(k), m > 0 

where 

(6.6) Tr -(v + rI)-l(rI - H)(H + rI)-(rI - V) 

gr(k) (v + rI)-l { (rI - H) (H + rI)-l + I}k. 

Since (H + V) is monotone, (6.2) admits a unique solution v. Therefore, if ?(m) 

v(m) - v is the error after m iterations, then E(m+l) = Trm+iE(m) and, in general, 

(6. 7) r'M) =t Trk) E( ) m >1 

Since H and V, as defined by (6.3) and (6.4), are each, after a suitable permutation, 
the sum of five diagonal matrices (Hj, 1 < j < M; V,, 1 < i < N) (cf. Varga [29, 

p. 211] for tri-diagonal case) such that H1 = H2 = ... HM, and V1 = V2 = = 

VN, it is easily seen that H and V have the same eigenvectors a (k, ). For example, if 
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(*S) bs thi th e'gebnvector wr a .b fk HM tin 

0(k) x(k) 

[HI x~k xf 

(kk) (A-) 

with a sinilr resul for an aritrar egnvector of Vi. Therefore, if y(1) is the lh 
egenetr of Vr the the compnent of the (k 1)t eigenvector of 11 or V, a (k,> 
for the (i, j)th meh point 'is given by 

aM 
1 

(ThzX y(, 1 tc? ,1 jl M Cgi - =} 1 :5 * 
k ;9 Nj I <j, I :! M 

If IT ? Tt? ? TN and Ai 5 P2 5 * 5 Axr are the cigenvalues of the sub- 
matrices Hi and V1, respectively, then it is easily verified by direct calculation that 

, 1?1< M I ml1 < k < N < 

and, 
_) (kI) _ _NI l I 

IVa@) ptal _ 5 k 5 N, 1 I M. 

Now defining 

X = sup jX(x)J 

s = sup {s(y)j 

(6.8) q(') <fsu 
=(1) sup jq(1)()j) 

q 
( 

=SUPv I12) (Y)1 
O~x?W 

we are ready to prove, with the restrictions, 

f 2 1/ 2 11 
0<AXMi M'n{% (2 /} 0<Ay?Min{? ()} 2 

TnEtonM 6.1. The submatrices H. and Vj defined in (6.3) and (6.4) are diagonally 
similar to oscillation matrices, and therefore have the following properties: 

(1) If (rkt I :? k ? N) and (p,, I ? I ? Al) are the cigenvalues of the submatrices 
Hi and V, respectively, then 

0 <Oi < T1 <T< < WN 0 <jP1 < P2< < Am. 

(2) If (xb), I ?k Jo ?N) and (y(') 1 < I < Al) are the eigenvectors of the sub- 
matrices Hi and IQ, respectively, then each forms a linearly independent set. Moreover, 
the cigenvectors, a form a basis for the n-dimensional vector space V.{C) where n 
MN. 
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Proof. Since properties (1) and (2) follow directly from Theorem 5.3 and H1 = 

H2 = = HM, and V1 = V2 = * = VN, all that need be shown is that H1 and 
V1 are diagonally similar to oscillation matrices. Let D be the diagonal matrix whose 
diagonal entries d, X are given by 

dripi (-1)'+, 1 < i<N, 

then it is easily verified that the matrix B+ defined by 

(6.9) B+-D-`HD>O. 

Since B+ is a nonnegative matrix with two superdiagonals and two subdiagonals, 
we shall establish the hypotheses of Theorem 5.5 in order to obtain this result. Let 
us consider the following cases: 

Case I. 

B+?[ 7i1+i: II:+ 1], 1 <i N-p;1 ?p<N- 1, 
Li + l, i + 2, .. I i + p 

B+ i+ 1, i + 2, 
I i + p ], 1 _ i _ N -p; 1 _ p _ N- 1. 

ii+ 1,***,i+ p -1 

Let us choose S(P) to be a p X p diagonal matrix whose diagonal entries s, i are given 
by 

s (6) < i < p. 

Then it is easy to verify that, 

(S P))'B [ i, i + 1,, * I i + P - 1S(P) 

i+ l1i+21 ... Ii + p 

and 

Sp))B++ 1ni2n **)-p 
+ + 1, + 

for all 1 ? p < N - 1, are strictly diagonally dominant matrices and therefore, 

B+ ( ii + 1, .. * , + P-11) > 0 
k k + 1, ... Ik + p- 1 

for all i, k =1, 2, ** *,N -p; i-k=1,-1;1 p N-1. 
Case II. 

Ir t s ia t ti< Ng-epn+,1;,1tpt<mN 
i~+ 1, * iP -1 

From arguments similar to those given in ?3, we have that the matrix 
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is monotone. If Hi-' = (a j), then it is easily seen that 

B+ 
ly 

2, ...IN- 1) (1 2y ... N) 
2, 3 .. N 1,2, ,--N 

Since H1 is nonsingular and 

B+(1;2, N1) >0, 

from Case I, we have, since al, N > 0, that 

Hi I > O . 
1, 2, ., N 

By similar arguments, if Hi(i, p), where 

H (i, p) =H1['i+ 1, **,i + p 11= (h( 7P), 
ii+1,+ * ,i+p- 

is monotone for all (i = 1, 2, *,N - p + 1; 1 ? p ? N), then, defining 

(Hi (i, p) )-1 =(ak ip) 

we have 

' < a(iP) B+(,i+1 ,i+ p 1 ) +H ( 

i+ 1,i+2, *',i+p i+1, **,i+ p- 1 

Therefore, from Case I and the monotonicity of Hi(i, p), we have 

det (Hi(i, p)) =,Hli' , n+p 1 > O 
ii+ 1,***,i+ p-1 

for all 1 ? i < N - p + 1; 1 < p _ N. The matrix Hi(i, p) can be easily shown to 
be monotone for all (1 < p ? N) by applying the methods of ?3. Therefore, collect- 
ing the results of Cases I and II, we see that B+ is an oscillation matrix by Theorem 
5.5. Since H1 is similar to B+, the theorem is established for H1 and by identical 
arguments V1 can be shown to be similar to an oscillation matrix. Q.E.D. 

We shall now state, without proof, a particular theorem from Householder [15, 
p. 47]. 

THEOREM 6.2. Associated with an n X n complex matrix A is a convex body K, de- 
pending only on the eigenvectors of A, and a norm, jIA1jK, such that 

I A IK= p(A)I 

if and only if, for every eigenvalue f of A such that 1i4 = p(A), the number of linearly 
independent eigenvectors belonging to f3 equals its multiplicity. 
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Clearly from theorem (6.1) there exists such a norm for the matrices H and V 
which is the same for both, since they have the same eigenvectors. 

Now, following Varga [29, Chapter 7] and using this norm, it is clear that all the 
results obtainable from the commutative theory for the Peaceman-Rachford variant 
of ADI are applicable to the finite difference equations defined by (6.3) and (6.4). 
The most important of these is 

THEOREM 6.3. If a and d are the bounds for the eigenvalues rT and Pi of the matrices 
H and V defined in (6.3) and (6.4), i.e., 

0 < a r, <Hi 1 < i < n, 

and if the acceleration parameters Irkj I 1 are chosen in some optimum fashion (cf. 
Varga [29, p. 226] or Wachspress [26]) then, the average rate of convergence of the 
iterative method defined by (6.5) is 

(6.10) R = - np\11 Tri > ln (A3a) 

The result of (6.10) states that if we can obtain bounds on the eigenvalue 
spectrums of H and V, given by (6.3) and (6.4), then at least for the separable 
problem we can use variants of ADI to solve, very efficiently, the matrix equations 
of (6.2). We also have experimental evidence which indicates that the Peaceman- 
Rachford variant is very effective for nonseparable problems. This has been re- 
ported by Young and Ehrlich [30] and Price and Varga [21] for the standard 0(h2) 
finite difference equations and very recently proved by Widlund [28] for selfadjoint 
operators on a rectangular region.'0 

The iterative solution of matrix equations for which the associated matrix is 
nonsymmetric and is not of the M-matrix type has also been considered by Rockoff 
[23], who in contrast used the successive overrelaxation iterative method and tools 
different from those resulting from the theory of oscillation matrices. The results of 
this section are apparently the first such applications of the theory of oscillation 
matrices to alternating direction implicit iterative methods. 

7. ADI for Nonseparable Problems. The Peaceman-Rachford matrix Tr for 
a single fixed parameter is given, from (6.6), by 

(7.1) Tr = (V + rI)-'(rI - H)(H + rI)-'(rI -V) 

Using (6.7), we have 

F (m) = (Tr) mE (O) m > 1 

therefore, the iteration procedure, defined by (6.5), for a single fixed parameter 
converges if and only if p(Tr) < 1. Defining 

Tr= (v + rl)Tr(V + rl)-l 
= (rI - H)(rI + H)-1(rI - V)(rI + V)-1, 

we have 

10 We have not been able to extend Widlund's results to cover the difference approximations 
presented in ?3 and to date we have only experimental evidence and the results for a single accel- 
eration parameter given in ?7, for the nonseparable problem. 
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p(T,) = p(Tr) I II 'r || 2 

< J1(rl -H)(rI + H)-1f2ff(rI - V)(rI + V)_1'12, 

where 11 112is defined in ?2. Therefore, to prove T, is convergent we need only show 

JJ(rI - H)(rI + H)-'JJ2 < 1 

and 

(7.2) 11(rI - V)(rI + V)J1112 < 1. 

In order to establish sufficient conditions on H and V so that (7.2) holds, we shall 
use a theorem due to Feingold and Spohn [8]. Results of this sort have been reported 
as well by Wachspress and Habetler [27] and Birkhoff, Varga and Young [3]. 

Definition 7.1. If S is a Hermitian and positive definite n X n matrix, then 

lxIIg = (x*Sx)1/2 

denotes a vector norm, and the induced matrix norm is defined by 

JJA 1s = sup (jjAxJJ,/1Jjxjj8) 
XHO 

We shall now prove 
THEOREM 7.1 (FEINGOLD AND SPOHN). Let A and B be n X n matrices with A non- 

singular and A - B Hermitian and positive definite. Then lA-'B (A-B) < 1 and 
IJBA-1I(A-B)-1 < 1 if and only if A* + B is positive definite. 

Proof. Since 

A-1B = I - A-'(A - B), 

then from Definition 7.1, iJA-'B I(A-B) < 1 is equivalent to 

(7.3) 11 (I - A'(A - B))XII(A-B) < 11XII(A-B), for all x $ 0 . 

Letting 

A-'(A- B)x = y 

then (7.2) becomes 

JJ(A -B)-1Ay -YII(A-B) < JI(A -B)-'AyJJ(AB) for ally 5 0. 

Again using Definition 7.1, and remembering that A - B is Hermitian, we have 

y*(A - B)y - y*Ay + y*A*(A - B)-'Ay - y*A*y < y*A*(A - B)-Ay, 

which is equivalent to 

y*A*y + y*Ay - y*(A - B)y > 0 

which is equivalent to 

y*(A* + B)y > 0 

which completes the first part of this result. The proof of the second part is similar. 
Q.E.D. 
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If we letA =rl+P andB=P-rl, for anyr>O we have that A - B = 2rl 
is Hermitian and positive definite, so we have immediately 

COROLLARY 7.1. If P is an n X n matrix, with (rI + P) nonsingular for all r > 0, 
then 

JJ (rl + P)-1 (P-rl) 11 < 1 

if and only if P* + P is positive definite. 
Since, from Definition 7.1 and Definition 2.5, 

IJAl/Il = AII 12, 

we have that (7.2) holds if and only if HT + H and VT + V are positive definite. 
Therefore, if we wish to solve the finite difference equations (4.1) 

(H + V)x = Ax = k 

using (6.5), it is sufficient to show that H + HT and V + VT are positive definite. 
We shall proceed by showing that the matrix P, representing the 0(h4) finite 

difference approximation to (3.1) for an arbitrary row or column of our mesh region 
R of Fig. 2 (see ?4), is such that P + PT is positive definite. For simplicity, we shall 
neglect the first derivative terms in (3.1) since they greatly complicate the algebra 
and add only mesh spacing restrictions to the final result. The n X n matrix P, 
representing an arbitrary row or column of our region is given by: 

(Pu) = (12 (3 XjX) + 12h2q1)ul - 24 ) u2 

+ 12 (1i2 U3, 0 <X < 1, 

(Pu) i-12u 1 + (24 + 12h2qi)uX 
(7.4) -12uj+1, i = 2, n- 1, 

(PU)i Ui-2 -16ui1 + (30 + 12h2qi)ui 
-16ui+1 + ui+2 , 3 _ i _ n-2, 

(Pu)n = (12 (3 I) + 12h2qn)un -24 (2 - U un-1 

+ 12 +1 2 , 0 < A < 1. 

If Q is the matrix derived from P in (7.4) by setting the qj's to zero, we have 

(7.5) xT(P + PT)x > xT(Q + QT)x, 

since, by assumption, qj _ 0 1 < i < n. It is easily verified, using straightforward 
inequalities such as 

(xi - Xi+2) ?< 2(x - x i+j) + 2(xi+ -Xi+2)2 

that 
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xT(Q + QT)x = (12 -3 - (12 (; 1I )X1X2 

+ (14 
11 

)XX3 + 9 2 x22+ x32 
n-+2) 12 
n-2 

+ Ii Z i(x -Xi1)2 + (b2 x2) 

+ 1 E (1 i viol +Xn-2 + 9 - 
n-1 

i=2 2 

+b14 - (I1 XnXn-2 - 1 (2 )XnXn-1 
(7.6) + (12(:-))xU + 2 = (1 (3o )aIxx 

72 (3y- u) 2 

a-f 19 \y 19` 22 

n1-2 

+ 1= i Xi+1) + (bXn + (n-2;)) 
i-2 

+ (3e u' 1) 2 l 
+ (12 (3 I) a,-I) Xn, 

Also by a simple calculation, we have 
( 

2(3-Ybe) Ofor all O <ya< 1, 

giving finally 

xT(P +PT)x >xT(Q +QT)x >O for all x$#O . 
Collecting these results, we have 

THEOREM 7.2. The Peaceman-Rachford variant of ADI defiined by (6.5) converges 
for any single, positive, fixed, parameter, r, when used to solve the matrix equations 
(4.1), for all h efficientlyy small. 

Theorem 7.3 along with Theorem 6.3 gives us as complete a theory for the 
Peaceman-Rachford variant of ADI for the high order finite difference equations of 
Section 3 as existed for the 0(h2), standard, central, difference approximations before 
Widlund [28]. In the absence of a more complete theory for the nonseparable case, 
we recommend using 2m Wachspress parameters, once reasonable bounds for the 
eigenvalue spectrum have been found. An excellent upper bound de is obtained by 
using the Gershgorin Circle Theorem (see Varga [29, p. 16]), which is equivalent to 

MfAax {II]HIKX || VJJx} 
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Also, since H and V are both monotone, the inverse power method of Wielandt, (see 
Varga [29, p. 288]), may be used to obtain the lower bound a. Excellent results are 
obtained by using these bounds and the Wachspress parameters, as seen from the 
numerical results of Tables 1 and 2. 

8. Numerical Results. We consider here the numerical solution of the following 
problem: 

2 2 

8 2 + = 32e e (x, y) E R 
(8.1) x y 

u (x, y) = e 4ze4y (x, y) E Ci 

where the Ri are the regions of interest with boundaries Ci. The solution of (8.1) is 
easily verified to be 

u (X, y) = ee4y, (x, y) EX,. 

For each example, we again solve both the high accuracy, O(h4), finite difference 
equations, presented in ?3, and the standard, O(h2), finite difference equations for 
a sequence of mesh spacings (h) tending to zero. 

In all cases the Peaceman-Rachford variant of ADI described above, is used to 
solve the matrix equations. The upper bound, b, of the eigenvalue spectrums of H 
and V, is chosen to be 

b Max {IlHIJoo, IIVIJoolJ 
The lower bound, a, is found by doing ten iterations of Wielandt's inverse power 
method (see Varga [29, p. 288]). We use, cyclically, 2m acceleration parameters 
generated using formulas presented by Wachspress [25]. The number m is chosen, 
in all cases, to be the smallest integer such that 

(bm - am)/(bm + am) < 5 = 1 X 10-5, 

where 

ao = a, bo = b; 

aj+1 = (aibi) , bi+1 2 
+ i > O. 

This is just a suggestion made by Wachspress [25], where a is the desired accuracy. 
The iterations are stopped when 

Ui(k) (k-i) 

(8.2) Max| (k)- < 1 X 10 , k 1, 

where u (k) is the solution of the iterative procedure after k cycles of m parameters 
and u(0) 0. 

We then compare the approximate solution of the matrix equations to the exact 
solution of (8.1) and compute 

(1) The maximum component of the relative truncation error, 

Ilello = Max I(ui - vi)/uil 
1i i<N;u i 9dO 
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where u is the solution of the continuous problem evaluated at the mesh points and 
v is the solution of the difference equations; and 

(2) The order of the approximation 

a- = (10l l r(he) 11) log tl 

Tabulated also are the number of parameters 2m which were used, and the number of 
cycles (k) needed to satisfy (8.2). 

Example 1. Unit Square. 

TABLE 1 
Standard High Accuracy 

h HI a 2m k Nell| a 2m k 

.125 .175 8 3 .355 X 10-1 8 3 

.0625 .454 X 10-1 1.95 16 2 .266 X 10-2 3.74 16 2 

.03125 .114 X 10-1 1.99 16 3 .184 X 10-3 3.86 16 3 

.015625 .288 X10-2 2.0 16 3 .115 X 10-4 3.99 16 3 

Clearly the theoretical estimates of ?3 are confirmed, as well as the earlier results 
of ?6. We see from Table 1, that for a mesh size h = .03125, which is 1024 mesh 
points, a 100 to 1 improvement in the relative error is obtained with the high accu- 
racy method. Also we see for this example, that the high accuracy difference 
equations require only 1/15th as much computer time as the standard difference 
equations to obtain a given accuracy. 

Example 2. An L Shaped Region. 

R2 

TABLE 2 
Standard High Accuracy 

h j1jjl alX 2m k 1 a 2m k 

.125 .477 X 10-1 8 3 .148 X 10-1 8 3 

.0625 .126 X 10-1 1.92 8 3 .105 X 10-2 3.82 8 3 

.03125 .323 X 10-2 1.96 16 3 .690 X 10-4 3.92 16 3 

.015625 .812 X 10-3 1.99 16 3 .436 X 10-5 3.98 16 3 
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Clearly, the theoretical results of Section 3 are borne out by the numerical 
experiments. Moreover, the Peaceman-Rachford variant of ADI for these high 
order difference approximations appears as efficient for nonseparable problems as 
it is for separable problems. This observation was reported by Young and Ehrlich 
[30] and Price and Varga [21] for the standard, O(h2), finite difference equations 
before the result was proved by Widlund [28]. The proof for these high order equa- 
tions is still an open question. 

We have seen then how effective high accuracy difference equations can be. 
Even though none of the examples considered here could be called practical prob- 
lems, these results are certainly impressive. Because the high accuracy methods, in 
many cases, allow one to use fewer mesh points to obtain a given accuracy, computer 
time and storage can be saved. 

Both the theoretical results in the body of this paper and the numerical results 
presented here indicate that, when solving practical problems, high accuracy finite 
difference equations should be considered. 

Gulf Research and Development Company 
Pittsburgh, Pennsylvania 15230 
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